p-group, metabelian, nilpotent (class 3), monomial
Aliases: C4.2C42, C22.7D8, C23.52D4, C22.4Q16, C22.9SD16, C4⋊C4⋊4C4, (C2×C8)⋊4C4, C4.3(C4⋊C4), (C2×C4).12Q8, (C2×C4).111D4, (C22×C8).2C2, C2.2(C4.Q8), C2.2(C2.D8), C2.2(D4⋊C4), C22.15(C4⋊C4), C4.19(C22⋊C4), C2.2(Q8⋊C4), C22.25(C22⋊C4), C2.5(C2.C42), (C22×C4).102C22, (C2×C4⋊C4).2C2, (C2×C4).39(C2×C4), SmallGroup(64,21)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.4Q16
G = < a,b,c,d | a2=b2=c8=1, d2=bc4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=ac-1 >
Subgroups: 93 in 57 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C2×C4⋊C4, C22×C8, C22.4Q16
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, D8, SD16, Q16, C2.C42, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C22.4Q16
Character table of C22.4Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | i | i | -i | -i | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | i | -i | -i | -i | i | i | i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -1 | -i | -1 | 1 | i | i | -i | i | -i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | 1 | 1 | -1 | i | -1 | -i | i | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -i | i | -i | 1 | i | 1 | -1 | i | i | -i | i | -i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | 1 | 1 | -1 | -i | -1 | i | -i | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | -1 | -1 | 1 | i | 1 | -i | i | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ12 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | i | -i | i | 1 | -i | 1 | -1 | -i | -i | i | -i | i | i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -1 | -1 | 1 | -i | 1 | i | -i | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ14 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | -1 | i | -1 | 1 | -i | -i | i | -i | i | i | -i | i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | i | -i | i | i | i | -i | -i | -i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | -i | -i | i | i | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ22 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ26 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ27 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ28 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 57)(24 58)(25 46)(26 47)(27 48)(28 41)(29 42)(30 43)(31 44)(32 45)(33 55)(34 56)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 41)(17 56)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 23 31 50)(2 64 32 35)(3 21 25 56)(4 62 26 33)(5 19 27 54)(6 60 28 39)(7 17 29 52)(8 58 30 37)(9 63 46 34)(10 20 47 55)(11 61 48 40)(12 18 41 53)(13 59 42 38)(14 24 43 51)(15 57 44 36)(16 22 45 49)
G:=sub<Sym(64)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23,31,50)(2,64,32,35)(3,21,25,56)(4,62,26,33)(5,19,27,54)(6,60,28,39)(7,17,29,52)(8,58,30,37)(9,63,46,34)(10,20,47,55)(11,61,48,40)(12,18,41,53)(13,59,42,38)(14,24,43,51)(15,57,44,36)(16,22,45,49)>;
G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,57)(24,58)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45)(33,55)(34,56)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,41)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,23,31,50)(2,64,32,35)(3,21,25,56)(4,62,26,33)(5,19,27,54)(6,60,28,39)(7,17,29,52)(8,58,30,37)(9,63,46,34)(10,20,47,55)(11,61,48,40)(12,18,41,53)(13,59,42,38)(14,24,43,51)(15,57,44,36)(16,22,45,49) );
G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,57),(24,58),(25,46),(26,47),(27,48),(28,41),(29,42),(30,43),(31,44),(32,45),(33,55),(34,56),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,41),(17,56),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,23,31,50),(2,64,32,35),(3,21,25,56),(4,62,26,33),(5,19,27,54),(6,60,28,39),(7,17,29,52),(8,58,30,37),(9,63,46,34),(10,20,47,55),(11,61,48,40),(12,18,41,53),(13,59,42,38),(14,24,43,51),(15,57,44,36),(16,22,45,49)]])
C22.4Q16 is a maximal subgroup of
C24.132D4 C24.152D4 C4×D4⋊C4 C4×Q8⋊C4 D4⋊C42 Q8⋊C42 C4×C4.Q8 C4×C2.D8 C8⋊C42 C42.98D4 C42.99D4 C42.100D4 C42.101D4 C24.133D4 C24.67D4 C24.157D4 C24.69D4 C42.55Q8 C42.56Q8 C42.24Q8 C24.159D4 C24.71D4 C2.(C4×D8) Q8⋊(C4⋊C4) D4⋊(C4⋊C4) Q8⋊C4⋊C4 C24.160D4 C24.73D4 C24.74D4 (C2×SD16)⋊14C4 (C2×C4)⋊9Q16 (C2×C4)⋊9D8 (C2×SD16)⋊15C4 C24.135D4 C24.75D4 C24.76D4 C2.D8⋊4C4 C4.Q8⋊9C4 C4.Q8⋊10C4 C2.D8⋊5C4 D4⋊C4⋊C4 C4.67(C4×D4) C4.68(C4×D4) C2.(C4×Q16) C2.(C8⋊8D4) C2.(C8⋊7D4) C2.(C8⋊D4) C2.(C8⋊2D4) C42.29Q8 C42.30Q8 C42.31Q8 C42.121D4 C42.122D4 C42.123D4 C42.436D4 C42.125D4 C23⋊2D8 C23⋊3SD16 C23⋊2Q16 (C2×D4)⋊Q8 (C2×Q8)⋊Q8 C4⋊C4.84D4 C4⋊C4.85D4 C24.84D4 C24.85D4 C24.86D4 (C2×C4)⋊3D8 (C2×C4)⋊5SD16 (C2×C4)⋊3Q16 C4⋊C4⋊Q8 (C2×C8)⋊Q8 C4⋊C4.106D4 (C2×Q8).8Q8 (C2×C4).23D8 (C2×C8).52D4 (C2×C4).24D8 (C2×C4).19Q16 C42⋊8C4⋊C2 (C2×Q8).109D4 C24.88D4 C24.89D4 (C2×C4).26D8 (C2×C4).21Q16 C4.(C4⋊Q8) (C2×C4).28D8 (C2×C4).23Q16 C4⋊C4.Q8 D10.18D8 D10.10D8
C23.D4p: C22.SD32 C23.32D8 C23.22D8 C23.36D8 C23.37D8 C23.38D8 C23.23D8 C24.83D4 ...
(C2×C4p).Q8: C8⋊7(C4⋊C4) C8⋊5(C4⋊C4) C4.(C4×Q8) C8⋊(C4⋊C4) C42.437D4 C42.124D4 C2.(C8⋊Q8) (C2×C8).1Q8 ...
C22.4Q16 is a maximal quotient of
C42.385D4 C42.46Q8 C42.5Q8 C23.8D8 C42.27D4 C23.30D8 C42.8Q8 C42.389D4 C42.10Q8
C4p.C42: C8.7C42 C8.8C42 C8.9C42 C8.11C42 C23.9D8 C8.13C42 C8.C42 C8.2C42 ...
Matrix representation of C22.4Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 12 | 12 |
13 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 5 |
0 | 0 | 5 | 5 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,12,12,0,0,5,12],[13,0,0,0,0,1,0,0,0,0,12,5,0,0,5,5] >;
C22.4Q16 in GAP, Magma, Sage, TeX
C_2^2._4Q_{16}
% in TeX
G:=Group("C2^2.4Q16");
// GroupNames label
G:=SmallGroup(64,21);
// by ID
G=gap.SmallGroup(64,21);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,650,158,1444,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=1,d^2=b*c^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations
Export